Stata17是一款专业级的全能型数据管理统计分析软件,该软件能够提供极具科学依据的分析统计情况,并支持完全傻瓜式的操作,能够让用户轻松的进行数据分析、数据管理以及图表绘制等一系列操作,并能够通过直方图、箱线图、等高线图等不同表达形式的图标制作为你呈现,超级实用。
Stata17在基于原版操作方式的基础上有了极大的提升,如加入了双重差分法的官方命令、久期数据的新命令等,此外更是整合了Python、Java等,能够让广大用户更轻松有效的简化繁琐的数据分析流程。
1、统计功能很强,除了传统的统计分析方法外,还收集了近 20 年发展起来的新方法,如 Cox 比例风险回归,指数与 Weibull 回归,多类结果与有序结果的 logistic 回归, Poisson 回归,负二项回归及广义负二项回归,随机效应模型等。具体说, Stata 具有如下统计分析能力:
2、数值变量资料的一般分析:参数估计,t检验,单因素和多因素的方差分析,协方差分析,交互效应模型,平衡和非平衡设计,嵌套设计,随机效应,多个均数的两两比较,缺项数据的处理,方差齐性检验,正态性检验,变量变换等。
3、分类资料的一般分析:参数估计,列联表分析 ( 列联系数,确切概率 ) ,流行病学表格分析等。
4、等级资料的一般分析:秩变换,秩和检验,秩相关等
5、相关与回归分析:简单相关,偏相关,典型相关,以及多达数十种的回归分析方法,如多元线性回归,逐步回归,加权回归,稳键回归,二阶段回归,百分位数 ( 中位数 ) 回归,残差分析、强影响点分析,曲线拟合,随机效应的线性回归模型等。
6、其他方法:质量控制,整群抽样的设计效率,诊断试验评价, kappa 等。
1、双重差分法的官方命令
“双重差分法”(Difference-in-differences,简记DID)或许是最常用的计量方法。怎么能没有DID的Stata官方命令呢?为此,Stata 17及时地推出了DID的官方命令xtdidregress;其中,“xt” 表示这是适用于面板数据的命令。
除了进行常规的 DID 估计,命令xtdidregress还允许最多指定三个“分组变量”(group variables),或两个分组变量与一个时间变量,从而进行“三重差分法”(Difference-in-differences-in-differences,简记DDD)的估计。
另外,针对“重复截面数据”(repeated cross-sectional data),即所谓“准面板”(pseudo panel data),Stata 17也推出了相关的新命令didregress,可进行类似 DID 的估计。更重要的是,你可以用DID的官方命令,轻松地画平行趋势图啦~
2、完美的表格输出
实证研究者经常需要将Stata的多个回归结果以表格形式输出到word文件中。虽然早有官方命令estimates table可完成此类任务,但比较死板;故此前Stata用户一般使用非官方命令(比如estout或outreg)来输出回归结果。为此,Stata 17大幅改善了原来的table命令,使用户可轻松地以表格形式汇报回归结果(regression results)或统计特征(summary statistics)。
进一步,你可以设计回归表格的风格(styles),并应用于所创建的表格,然后将此表格输出到Word或其他形式的文件(包括PDF、HTML、LaTex、Excel、markdown 等)。另外,你还可以使用新增的前缀(prefix)collect,来收集Stata命令的各种估计结果。最后,Stata 17还新增了Table Builder(表格创建器),让用户可通过点击鼠标(point-and-click)来创建表格。
3、Lasso的新功能
作为“高维回归”(high-dimensional regression)的常用工具,Stata 16已经推出了有关Lasso(Least Absolute Shrinkage and Selection Operator,即所谓 “套索估计量”)的一系列官方命令。Stata 17则提供了更多有关 Lasso 的新功能。
使用Lasso估计处理效应模型。在 Stata 16 中,可使用命令teffects估计“处理效应”(treatment effects)模型;而命令lasso则用于估计协变量很多的高维模型。Stata 17则将二者结合起来,其推出的新命令telasso,可估计包含很多协变量的处理效应模型。
使用 BIC 选择Lasso惩罚参数。作为一种“惩罚回归”(penalized regression),在进行Lasso估计时,需要选择惩罚参数(penalty parameter)。在Stata 16中,可使用交叉验证(cross-validation)、适应性方法(adaptive method)或代入法(plugin)来选择惩罚参数。
在Stata 17中,新增了选择项 “selection(bic)”,可使用 “贝叶斯信息准则”(Bayesian Information Criterion,简记BIC)选择惩罚参数。而且,新增的估计后命令(postestimation command)bicplot 可以很方便地将此选择过程可视化。
使用Lasso处理聚类数据。对于“聚类数据”(cluster data),由于每个聚类中观测值存在自相关,故通常的Lasso估计可能导致偏差。在Stata 17中,在使用命令lasso或elasticnet时,可通过新增选择项 “cluster(clustvar)” 来处理聚类数据。进一步,对于使用Lasso进行统计推断的命令,比如poregress(表示partialing-out regress),则可使用Stata 17的新增选择项 “cluster(clustvar)” 来得到聚类稳健的标准误(cluster-robust standard errors)。
4、离散选择模型的新命令
离散选择模型(discrete choice model)是微观计量经济学的常用模型。在Stata 17中,增加了以下离散选择模型的新命令:
“面板多项逻辑模型”(panel multinomial logit model)。对于横截面数据的多项逻辑模型,Stata已有mlogit命令。Stata 17新增的xtmlogit命令则可使用面板数据估计多项逻辑模型。这无疑是Stata在离散选择模型方面的一大进步,因为此前Stata只能使用xtlogit或xtprobit估计面板二值选择模型。
“零膨胀排序逻辑模型”(zero-inflated ordered logit model)。对于排序数据(ordered data),此前可使用Stata命令ologit或oprobit进行估计。在实践中,有时排序数据中最低类别所占比重很大。若将最低类别的取值记为“零”,则存在所谓“零膨胀”现象。此时可使用Stata 17的新增命令ziologit,估计更有效率的“零膨胀排序逻辑模型”(zero-inflated ordered logit model)。
5、久期数据的新命令
“久期数据”(duration data)常用于生物统计的 “生存分析”(survival analysis),在经济学中也有广泛用途,例如失业的持续时间,婚姻的延续时长,王朝的寿命等。久期数据常存在 “删失”(censoring)或 “归并” 问题,比如当研究结束时,有些病人可能尚未死亡;或者有些失业者还未找到工作。
Stata 17新推出的命令stintcox,可使用Cox模型来估计一种特殊的“区间删失”(interval-censored)数据。对于区间删失数据,我们只知道事件发生于某个区间,但无法确知其发生时点;比如,只知道癌症复发于两次体检之间的时段。如果忽略久期数据存在的区间删失问题,则会导致估计偏差。
6、贝叶斯计量经济学的全面升级
在大数据时代,由于数据日益复杂而多样,在处理有些问题时,基于频率学派的传统计量方法可能不便使用,使得贝叶斯学派的计量经济学逐渐兴起。频率学派认为待估计的参数是给定的未知数(fixed unknown parameters),而贝叶斯学派则将未知参数视为服从某个分布的随机变量,并可随时根据新的样本信息将其 “先验分布”(prior distribution)更新为 “后验分布”(posterior distribution)。Stata 17将Stata中原有的贝叶斯统计学与计量经济学进行了全面升级。
贝叶斯面板数据模型(Bayesian panel-data models)。Stata目前已有的面板命令包括xtreg(静态面板),xtlogit或xtprobit(面板二值选择模型),以及xtologit或xtoprobit(面板排序模型)等。在 Stata 17中,如果要使用贝叶斯方法估计这些面板模型,只要在原命令之前加上 “前缀”(prefix)bayes即可。
贝叶斯向量自回归模型(Bayesian VAR models)。“向量自回归”(Vector Autoregression,简记VAR)是常见的时间序列模型。在已有的Stata中,可用命令var来估计VAR模型,而后续命令则包括:使用fcast进行 “动态预测”(dynamic forecast),以及使用irf估计 “脉冲响应函数”(impulse response function,简记 IRF)与 “预测误差方差分解”(forecast error variance decomposition,简记 FEVD)。
在Stata 17中,则可使用命令“bayes: var”(即在命令var之前加上前缀 bayes)估计贝叶斯的 VAR 模型,然后用bayesfcast进行动态预测;而脉冲响应函数与预测误差方差分解也可类似地得到。
然后,使用bayesfcast进行动态预测;
而脉冲响应函数(IRF)与预测误差方差分解(FEVD)也可类似地得到。
使用贝叶斯方法估计VAR模型有两大好处。首先,VAR模型通常包含较多参数,若样本较小,则估计结果不稳定。而贝叶斯方法由于较易“整合先验信息”(incorporating prior information),故在用小样本估计VAR模型时更为稳健。
其次,经典的VAR模型使用大样本理论进行统计推断与预测,需要假设估计量服从渐近正态分布,在小样本中不易满足。而贝叶斯方法则不使用大样本理论,也无须渐近正态的假设,故更适用于小样本。
贝叶斯多层模型(Bayesian multilevel models)。Stata 17新推出的bayesmh命令可以估计一系列的贝叶斯多层模型,包含“单变量”(univariate)或“多变量”(multivariate)的线性与非线性多层模型(linear and nonlinear multilevel models),乃至面板的生存时间模型(joint longitudinal and survival-time models)以及结构方程之类的模型(SEM-type models)等。
贝叶斯线性与非线性DSGE模型(Bayesian linear and nonlinear DSGE models)。“动态随机一般均衡”(Dynamic Stochastic General Equilibrium,简记DSGE)模型是宏观经济学的主流模型。在Stata 16 中,可使用命令dsge与dsgenl分别估计线性与非线性的 DSGE 模型。
在Stata 17中,只要在命令dsge与dsgenl之前加上前缀bayes,即可估计相应的线性或非线性的贝叶斯DSGE模型。可供用户选用的 “先验分布”(prior distribution)多达30以上,并可进行贝叶斯脉冲响应分析(Bayesian IRF analysis),区间假设检验(interval hypothesis testing),以及使用贝叶斯因子(Bayesian factors)来比较模型等。
7、非参数的趋势检验
有时样本数据中存在分组(比如,分为3组),且这些分组有天然的排序(比如,记为1,2,3组),即所谓 “排序分组”(ordered groups)。在这种排序分组的数据中,经常希望检验某个变量在此分组排序中(比如,第1-3组),是否存在某种趋势,比如此变量的取值倾向于越来越大,即所谓 “tests for trend across ordered group”。
为此,可使用Stata已有命令nptrend,进行非参数的Cuzick秩检验(Cuzick test using ranks)。而Stata 17的最新版nptrend命令,则在 Cuzick秩检验之外,新增了三个非参数检验,即“Cochran-Armitage test”,“Jonckheere-Terpstra test” 与“linear-by-linear trend test”,使得命令nptrend的功能大大增强。
8、元分析的新命令
“元分析”(meta-analysis)将多个类似的研究结果综合在一起。比如,针对某个疫苗的有效性(vaccine efficacy),在世界各地进行了多个实验,如何将每个实验所得的疫苗有效性指标,通过加权平均得到统一的度量。Stata 17将Stata的元分析功能作了进一步的提升。
多维元分析(Multivariate meta-analysis)。在将多个研究结果综合在一起时,其中的每个研究可能同时汇报 “多个效应规模”(multiple effect sizes),而这些效应之间可能存在相关性。若使用Stata既有的 meta命令,则会忽略这种相关性。Stata 17的新增命令meta mvregress可进行多维元分析,并处理这种相关性。
加尔布雷斯图(Galbraith plots)。Stata 17还新增了命令meta galbraithplot,可以画元分析的 “加尔布雷斯图”(Galbraith plots)。此图可用于评估不同研究之间的异质性(assessing heterogeneity of the studies),并发现潜在的极端值(potential outliers)。
留一元分析(Leave-one-out meta analysis)。Stata 17新增了 “留一元分析”(Leave-one-out meta-analysis)的功能。所谓“留一元分析”,就是在进行元分析时,每次均留出一个研究(不放在样本中),以考察元分析结果的稳健性;比如,最终结果是否过度依赖于某个研究。在使用Stata命令meta summarize或meta forestplot进行元分析时,可使用新增的选择项leaveoneout来进行留一元分析。
9、Stata与Python、Java、H2O及Jupyter Notebook的整合
在大数据时代,Stata也在加快与主流软件平台的整合,为用户提供更多的增值服务。这在Stata 17的此次升级中体现尤其突出。
与 Python 的整合(Python integration)。Python已是炙手可热的主流计算机语言。为此,Stata 16专门提供了一个与Python的接口,让用户在熟悉的Stata界面下调用Python,并在Stata中显示运行结果。Stata 17则更进一步,推出了新的Python包(Python package)pystata,使得用户可在Python 中方便地调用Stata。Stata 17还引入了一个新概念 “PyStata” ,包括 Stata与Python交互的所有方式。
与 Java 的整合(Java integration)。Java是一种应用广泛的跨平台编程语言。在Stata 17中,你可以十分方便地在Stata程序中嵌入并执行 Java 代码。
对于JDBC数据交换格式的支持(Support for JDBC)。JDBC(Java Database Connectivity)是一个在不同程序与数据库之间交换数据的跨平台标准(a cross-platform standard for exchanging data between programs and databases)。在Stata 17中,通过支持JDBC,使得 Stata用户可从一些最流行的数据库导入数据,包括Oracle、MySQL、AmazonRedShift、Snowflake、Microsoft SQL Server等。
与H2O的整合(H2O integration)。H2O是一款流行的机器学习软件平台。在Stata 17中,你可以连接并调用H2O的机器学习算法。这无疑为Stata用户打开了另外一扇通往机器学习的窗口!
在Jupyter Notebook中使用Stata(Jupyter Notebook with Stata)。Jupyter Notebook是一款基于网页的流行“集成开发环境”(integrated development environment,简记 IDE),尤其方便展示代码、公式、文字与可视化。在Stata 17中,作为PyStata的一部分(依赖于 Python 包 pystata),你可以从 Jupyter Notebook调用 Stata与Mata(Stata的矩阵语言)。这意味着,你可以在同一环境中整合Python与Stata的功能,使得你的工作更加可复制(reproducible)且易于分享。
10、Do文件编辑器的改进与Stata速度提升等
Do文件编辑器的改进(Do-file Editor improvements)。随着编程的重要性日益提高,Stata 16在Do文件编辑器中加入了 “自动填写完成”(autocompletion)与 “语法高亮”(syntax highlighting)的功能。Stata 17又将Do文件编辑器的功能进一步提升。
在Stata 17的Do文件编辑器中,可通过设置 “bookmarks”(书签)而在一个较长的do文件中迅速跳至想要编辑的部分。Stata 17的Do文件编辑器还新增了“navigation control”(导航),其中罗列所有的书签及其标签(bookmarks and their labels),以该Do文件中的全部“程序”(programs)。
Stata的速度提升(Faster Stata)。在大数据时代,基础算法的速度越来越重要。为此,Stata 17更新了命令sort与collapse的算法,使之更为快捷。另外,Stata 17也提升了命令mixed(用于估计多层混合效应模型,即 multilevel mixed-effects models)的运行速度。
使用Intel Math Kernel Library(MKL)提升速度。Stata 17引入了Intel Math Kernel Library(MKL),适用于所有Intel或AMD的64位计算机,从而可调用深度优化(deeply optimized)的LAPACK(Linear Algebra PACKage)线性代数包。这将使得Stata与Mata的底层计算速度进一步提升,而Stata用户无须作任何事情即可享用。
处理日期与时间的新函数(New functions for dates and times)。Stata 17 引入了方便处理日期与时间的新函数,包括Datetime duration(计算持续时间),Datetime relative dates(计算相对日期,比如下个生日的日期),以及Datetime(从日期中提取不同的成分)。这些新函数还会自动考虑闰年(leap years)、闰日(leap days)与闰秒(leap seconds)的因素。
总之,Stata 17是一次令人激动的重大升级,不仅有贝叶斯计量经济学的高歌猛进,与主流计算机语言平台的深度整合,更便于编程的Do文件编辑器,而且更为贴近计量实战的需求(DID,表格输出,离散选择等)。显然,在可预见的将来,Stata 依然会是经管社科的首选计量与统计软件。
数据导入方法一:
直接复制粘贴
绝对简单明了,不需要任何技术,缺点就在于当数据比较多的时候,拉框选择还是一件很麻烦的事情,有些数据在excel中可能是显示小数点后两位,但实际储存的并不止这么多。如果是复制粘贴了,可能只粘贴过去小数点后两位,这样就损失了一部分精度。最不推荐。
数据导入方法二:
命令:use
1.insheet using filename, [option]
这个命令是专门用来导入像excel之类的以电子表格形式存储的数据。在导入之前,首先要把excel文件转存为Stata可以识别的格式。其中我最常用的就是另存为csv逗号分隔符格式。
然后在Stata中使用insheet读取csv文件,在option中指定为comma告诉Stata你读取的是csv文件。
这种方法有个不足在于如果你的数据中包含中文而且里面含有逗号时无法识别,解决的办法是不要用逗号标示分隔符了,在excel中另存为txt(制表符分隔),这样就不会与逗号相混淆了。然后再在insheet命令中在option里指定是tab,就完事了。
2.infile using filename
这个infile命令分两类,一种是处理固定格式(fixed format)的txt或raw,另一种是处理自由格式(free format),当然你在用这个命令里还需要定义一个dictionary,这个dictionary是用来描述数据的组织方式的,需要自己根据要导入的数据文件自己编写代码,然后嵌套到数据文件txt的前面去,或者是单独地存为一个dct文件,并且告诉Stata你要导入的数据在保存在哪里。
3.xmluse
这个命令首先要把xls文件另存为xml格式,然后用xmluse命令去读取,当然在读取时你也要在option中声明你的xml文件是excel保存的而不是Stata保存的,这样就不会弄错。
如果你的xls文件中如果有汉字的话,Stata读取后对应的变量会出现乱码,这一点用insheet就不会有这个问题。
4.odbc
这个命令是专门读取数据库文件的,并且支持SQL命令,这样如果你的数据比较多的话,可以先用SQL语句进行筛选,然后而导入。当然这个命令也能导向excel文件。
数据导入方法三:
点击“File”→“Open”,找到文件“.dta”,局限比较大,主要是表格类型只支持.dta格式。
数据导入方法四:
点击“File”→“import”,可以导入xls,txt等其他格式的数据,同样是对于导入文件的格式有要求。
第一步,我们打开STATA软件,在command中输入help twoway,然后按键盘上面的回车键
第二步,可以看到STATA中可以绘制的双变量图像,图中红框中的类型
第三步,我们以1900~1999 期望寿命的数据为例,在command中输入sysuse uslifeexp,clear,然后按键盘上的回车
第四步,在command中我们想要制作折线图,可以在command中输入twoway line le year
第五步,等待片刻,即可在图表查看器中我们可以看到按照要求绘制出的折线图
首先,打开Stata官方版,确定自己安装的命令是否已经在stata系统之中,简单的一个测试方法便是在输入框中输入“help XXX”,以“fsum”命令为例,输入“h fsum”。
如果没有该命令,则会出现图片的提示。这里也可以选择“是”来软件自动搜索,但是我们提供另外一个下载方式。
我们可以直接在stata命令窗口中输入下载命令:“ssc install fsum”命令,点击就安装到本地了,一般放在C盘的ado文件夹里面。
等待下载,当出现以上图样的时候,命令便下载完成了。
最后检验一下新命令是否添加完成,采用上述方法输入“h fsum”命令查询即可。
168.2MB/国产软件
2021-01-18
35.7MB/国产软件
2021-03-24
12.56MB/国产软件
2021-03-29
88.3MB/国产软件
2021-05-08
63.29MB/国产软件
2021-01-13
9.64MB/国产软件
2021-01-09
45.11MB/国产软件
2021-01-08
168.77MB/国产软件
2021-03-04
41.12MB/国产软件
2021-01-21
UPUPOO激活码领取软件77.98MB / 2021-02-06
点击查看Photoshop 2020破解版1.9GB / 2021-01-04
点击查看Maya2021最新版1.86GB / 2021-02-03
点击查看Xshell7激活破解版88.18MB / 2021-01-14
点击查看RPG Maker MV全能修改器507KB / 2021-01-05
点击查看OC渲染器4.0破解版114.83MB / 2021-01-15
点击查看AI全自动剪辑软件破解版121MB / 2021-02-19
点击查看Auto Unlocker破解版35.7MB / 2021-11-12
点击查看diskgenius专业版38.7MB / 2021-09-25
点击查看Photoshop 2020破解版1.9GB / 2021-01-04
点击查看方方格子Excel工具箱下载94.55MB / 2021-02-04
点击查看CorelDRAW2021破解版727.34MB / 2021-01-16
点击查看